The Ethernet Evolution

From 10Mbit/s to 10Gigabit/s Ethernet Technology
From Bridging to L2 Ethernet Switching and VLANS

Agenda
- Ethernet Evolution
- VLAN
- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

The Beginning
- initial idea: shared media LAN
 - bus structure, CSMA/CD was access method
 - coax cable, transmission rate up to 10 Mbit/s
 - half-duplex transmission (two physical wires e.g. coax)

Enlarging the Network
- repeater as signal amplifier used to enlarge the network diameter but no network segmentation
- !!! still one collision domain !!!
Multiport Repeater

- demand for telephony-like point-to-point cabling using Twisted Pair wires
 - based on structured cabling standard
 - 10BaseT as new Ethernet type to support this demand
 - four physical wires (2 for tmt, 2 for rcv)
- network stations are connected star-like to a multiport repeater
 - multiport repeater is called "hub"
- hub simulates the bus: "CSMA/CD in a box"
- only half-duplex
 - only one network station can use the network at a given time, all others have to wait

Structured Cabling (1)

Structured Cabling (2)

Bridging

- simple physical amplification with repeaters became insufficient
 - with repeaters all nodes share the given bandwidth
 - the whole network is still one collision domain
 - technology moved toward layer 2
- bridges segment a network into smaller collision domains
 - store and forward technology (packet switching)
 - the whole network is still a broadcast domain
 - Spanning Tree provides a unique path between each two devices and avoids broadcast storms
Network Segmentation with Bridges

Collision Domains

Broadcast Domain

Bridge

Switching (1)

- "switching" means fast transparent bridging
 - implemented in hardware
 - also called Layer 2 (L2) switching or Ethernet switching
- multiport switches allow full duplex operation on point-to-point links
 - no need for collision detection (media access control) on a link which is shared by two devices only
 - network station <-> switch port
 - switch <-> switch
- multiport switches replaces multiport repeaters
 - a collision free Ethernet can be built, if network consists of point-to-point links only

Switching (2)

collision domain on shared media (only half duplex possible)
collision domain on point-to-point link reduced to a single link

Switching (3)

full duplex on point-to-point links
collision domain on shared media (only half duplex possible)
Switching (4)

- Full duplex everywhere = collision free Ethernet LAN

Switching (5)

- L2 switches can connect Ethernets with 10 Mbit/s, 100 Mbit/s or 1000 Mbit/s for example
 - clients using 10 Mbit/s either half duplex on shared media or full duplex on point-to-point connection with switch
 - server uses 100 Mbit/s, full duplex, point-to-point connection with switch
 - note: multiport repeater is not able to do this!
- L2 switch as packet switch operates with asynchronous TDM
 - congestion can be avoided by using a new MAC based flow control (pause command)

Switching (6)

- Server 100 Mbit/s
- Clients
- Flow Control possible

Redundant Topology L2 Switching

- Represents four CU wires 2 for Tmt, 2 for Rcv (e.g. 10BaseT)
- Represents two FO wires e.g. 10BaseF
Spanning Tree Applied

Agenda

- Ethernet Evolution
- VLAN
- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

Virtual LANs (1)

- today's work-groups are expanding over the whole campus in case of local environment
- users of one workgroup should be kept separated from other workgroups
 - because of security reasons they should see there necessary working environment only
- end-systems of one workgroup should see broadcasts only from stations of same workgroup
- the network must be flexible
 - to adapt continuous location changes of the end-systems/users
Virtual LANs (2)

- **base idea of VLAN:**
 - multiplexing of several LANs via same infrastructure (switches and connection between switches)
- **today's switches got the ability to combine several network-stations to so-called "Virtual LANs"**
 - separate bridging/switching table maintained for every single VLAN
 - separate broadcast handling for every single VLAN
 - each Virtual LAN is its own broadcast domain
 - separate Spanning Tree for every single VLAN
 - note: IEEE 802.1w specifies a method to share one Rapid Spanning Tree among all VLANs

VLAN Assignment

- a station may be assigned to a VLAN
 - **port-based**
 - fixed assignment port 4 -> VLAN x
 - most common approach
 - a station is member of one specific VLAN only
 - **MAC-based**
 - MAC A -> VLAN x
 - allows integration of older shared-media components and automatic location change support
 - a station is member of one specific VLAN only
 - **protocol-based**
 - IP-traffic, port 1 -> VLAN x
 - NetBEUI-traffic, port 1 -> VLAN y
 - a station could be member of different VLANs

Virtual Trunks - VLAN tagging

- switches must be connected via VLAN-trunks on which each particular VLAN-frame is "tagged" (marked) with an identifier
 - examples for tagging standards:
 - IEEE 802.10 (pre 802.1Q temporary solution)
 - ISL (Cisco)
 - IEEE 802.1Q
 - so switches can distinguish between several VLANs and manage their respective traffic
802.1Q VLAN Tagging

Ethernet V2

VLAN Operation (1)

VLAN Operation (2)
VLAN Operation (3)

A5 -> broadcast

B1 -> B5

VLAN B

VLAN A

Multihomed VLAN 1

A6 = B6

A6 -> A3

B6 -> B2

tag VLAN B

tag VLAN A

Multihomed VLAN 2

Multihomed VLAN 3
Trunking between L2 Switches

- on trunks between multiport switches full duplex operation is possible
 - hence "200 Mbit/s" with Fast Ethernet
 - hence "2 Gbit/s" with Gigabit Ethernet
- on trunks bundling (aggregation) of physical links to one logical link is possible
 - Fast Ethernet Channeling (Cisco)
 - 400 / 800 Mbit/s
 - Gigabit Ethernet Channeling (Cisco)
 - 4 / 8 Gbit/s
 - IEEE 802.3 (2002) LACP (Link Aggregation Control Protocol)

Trunking without LCAP / FEC / GEC

- Trunk 2 (blocked by STP)
- Bandwidth of trunk 2 not used

Trunking with LCAP / FEC / GEC

- One logical trunk for STP
- Load Balancing over two physical trunk lines

Communication between VLANs

- switches do not allow traffic between (different) VLANs
- end-systems have to make use of routers
- routers can be either part of several VLANs (via multiple physical ports), or
- routers provide VLAN-trunk capabilities -> router must be able to recognize and change VLAN tags
Agenda

- Ethernet Evolution
- VLAN
- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

IEEE 802.3 (2002)

- the latest version of IEEE 802.3 specifies
 - operation for 10 Mbit/s, 100 Mbit/s, Gigabit/s and 10Gigabit/Ethernet
 - full duplex Ethernet
 - auto-negotiation
 - flow control
- it is still backward compatible to the old times of Ethernet
 - CSMA/CD (half-duplex) operation in 100 and 1000 Mbit/s Ethereas with multiport repeater possible
 - frame bursting or carrier extension for ensuring slot-time demands in 1000 Mbit/s Ethernet
- IEEE 802.3ae specifies (2004)
 - operation for 10 Gigabit/s Ethernet over fiber
- IEEE 802.3ak specifies (2006)
 - operation for 10 Gigabit/s Ethernet over copper

Full-Duplex Mode

- full-duplex mode is possible on point-to-point links
 - except 100BaseT4 (Cat 3 cable), 100BaseVG which can work in half duplex mode only
 - note: 10Base2 and 10Base5 are shared links and by default half duplex medias
- if a network station is connected to an Ethernet switch via point-to-point link
 - CSMA/CD is not in necessary and can be switched off
- now a network station can
 - send frames immediately (without CS) using the transmission-line of the cable and simultaneously receive data on the other line

Flow Control

- speed-requirements for switches are very high
 - especially in full duplex operation
 - also powerful switches can't avoid buffer overflow
 - earlier, high traffic caused collisions and CSMA/CD interrupted the transmission in these situations, now high traffic is normal
- L4 flow control (e.g. TCP) between end-systems is not efficient enough for a LAN
 - switches should be involved to avoid buffer overflow
- therefore a MAC based (L2) flow control is specified
 - MAC-control-protocol and the Pause command
MAC-Control Frame

- identified among other frames by setting length field = 8808 hex
- always 64 octets

<table>
<thead>
<tr>
<th>8 octets</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>2</th>
<th>44</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>preamble</td>
<td>DA</td>
<td>SA</td>
<td>8808h</td>
<td>MAC-ctrl opcode</td>
<td>MAC-ctrl parameters</td>
<td>FCS</td>
</tr>
</tbody>
</table>

MAC-ctrl opcode defines function of control frame
MAC-ctrl parameters control parameter data; always filled up to 44 bytes, by using zero bytes if necessary

- currently only the "pause" function is available (opcode 0x0001)

The Pause Command

- on receiving the pause command
 - station stops sending normal frames for a given time which is specified in the MAC-control parameter field
- this pause time is a multiple of the slot time
 - 4096 bit-times when using Gigabit Ethernet or 512 bit-times with conventional 802.3
- paused station waits
 - until pause time expires or an additional MAC-control frame arrives with pause time = 0
 - note: paused stations are still allowed to send MAC-control-frames (to avoid blocking of LAN)

The Pause Command

- destination address is either
 - address of destination station or
 - broadcast address or
 - special multicast address 01-80-C2-00-00-01
- this special multicast address prevents bridges to transfer associated pause-frames to not concerned network segments
- hence flow-control (with pause commands) affects only the own segment

Demand for Higher Speed

- higher data rates need more sophisticated coding
 - 10 Mbit/s Ethernet: Manchester coding
 - Fast Ethernet (100 Mbit/s): 4B/5B block code
 - Gigabit Ethernet 1000 Mbit/s): 8B/10B block code
- new implementations should be backwards-compatible
 - old physical layer signaling interface (PLS), represented by AUI, was not suitable for new coding technologies
- AUI has been replaced
 - MII (Media Independent Interface) for Fast Ethernet
 - GMII for Gigabit Ethernet
New Physical Sublayers

<table>
<thead>
<tr>
<th>Logical Link Control LLC</th>
<th>Data Link Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Control (optional)</td>
<td>MAC Access Control MAC</td>
</tr>
<tr>
<td>AUI</td>
<td>PHY</td>
</tr>
<tr>
<td>MDI</td>
<td>MDI</td>
</tr>
<tr>
<td>MII</td>
<td>MII</td>
</tr>
<tr>
<td>PCS</td>
<td>PCS</td>
</tr>
<tr>
<td>PMA (MAU)</td>
<td>PMA</td>
</tr>
<tr>
<td>MDI</td>
<td>MDI</td>
</tr>
<tr>
<td>MII</td>
<td>MII</td>
</tr>
</tbody>
</table>

New Physical Sublayers

- Physical Layer Signaling (PLS) serves as an abstraction layer between MAC and PHY
- PLS provides
 - data encoding/decoding (Manchester)
 - translation between MAC and PHY
 - Attachment Unit Interface (AUI) to connect with PMA
- several new coding techniques demand for Media Independent Interface (MII)
- today coding is done through a media-dependent Physical Coding Sublayer (PCS) below the MII

PHY Sublayers

- PLS has been replaced with the Reconciliation sublayer
 - Reconciliation layer transforms old MAC PLS-primitives into MII control signals
- MII serves as an interface between MAC and PHY
 - hides coding issues from the MAC layer
 - MII: often a mechanical connector for a wire; GMII is an interface specification between MAC-chip and PHY-chip upon a circuit board
 - one independent specification for all physical media
 - supports several data rates (10/100/1000 Mbits/s)
 - 4 bit (GMII: 8 bit) parallel transmission channels to the physical layer

PHY Sublayers

- Physical Coding Sublayer (PCS)
 - encapsulates MAC-frame between special PCS delimiters
 - 4B/5B or 8B/10B encoding respectively
 - appends idle symbols
- Physical Medium Attachment (PMA)
 - interface between PCS and PMD
 - (de)serializes data for PMD (PCS)
- Physical Medium Dependent (PMD)
 - serial transmission of the code groups
 - specification of the various connectors (MDI)
Bridging Aspects

- **new PHY-sublayers preserves old Ethernet MAC frame format**
 - bridging from 10 Mbit/s Ethernet to 100 Mbit/s Ethernet does not require a bridge to change the frame format
 - Remark: bridging from 10 Mbit/s Ethernet to FDDI (100 Mbit/s Token ring) requires frame format changing -> slower!!
- **therefore Ethernet L2 switches**
 - can connect Ethernets with 10 Mbit/s, 100 Mbit/s or 1000 Mbit/s easily and fast

Today: Gigabit Ethernet

- **continues point-to-point and full-duplex idea**
- **also backward compatible with initial 10 Mbit/s shared media idea -> CSMA/CD capable**
- **but nobody uses it as shared media!**
 - multiport repeater with Gigabit Ethernet seems absurd because of small network diameter (20m)
 - 200m with carrier extension and burst mode
 - bandwidth sharing decreases performance; every collision domain produces an additional delay for a crossing packet
 - full duplex means exclusive, unshared, high performance point-to-point connections between two stations (total 2Gbit/s!)

Gigabit Ethernet becomes WAN

- **point-to-point full-duplex connections do not limit the maximal network diameter as CSMA/CD does**
 - Gigabit over fiber optic cables reach 70 km length (and even more)
- **trend moves towards layer 3 switching**
 - high amount of today’s traffic goes beyond the border of the LAN
 - routing decisions enable load balancing and decrease network traffic
- **Gigabit Ethernet becomes WAN technology**

Agenda

- **Ethernet Evolution**
- **VLAN**
- **High Speed Ethernet**
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet
100 Mbit/s Ethernet

- Access method disagreement split 100 Mbit/s LAN development into two branches:
 - Fast Ethernet - IEEE-802.3u (today 802.3-2002)
 - 100VG-AnyLAN - IEEE-802.12 (disappeared)
- Fast Ethernet was designed as 100 Mbit/s and backwards-compatible 10Mbit/s Ethernet
 - CSMA/CD but also
 - Full-duplex connections (collision free)
- Network diameter based on collision window requirement (512 bit times)
 - reduced by factor 10
 - e.g. 250m compared with 2500m at 10 Mbit/s

Implementation Overview 1

Fast Ethernet
- AUI has been replaced with the Media Independent Interface (MII)
 - New coding (4B/5B, 8B/6T, PAM 5x5) and bandwidth constrains demand for a redesigned abstraction layer
- MII defines a generic 100BaseT interface
 - Allows utilization of a 100BaseTX, 100BaseFX, 100BaseT4 or a 100BaseT2 transceiver
 - On-board or cable-connector with
 - 20 shielded, symmetrically twisted wire pairs -> 40 poles
 - One additional main-shield
 - 68 Ohm impedance; 2.5 ns maximal delay
 - 50 cm maximal length

Implementation Overview 2

100VG-AnyLAN
- HP and AT&T own specification for time sensitive applications
- Access method:
 - 100BaseT
 - CSMA/CD
 - 100VG-AnyLAN
 - Access method: demand priority

Fast Ethernet
- 100BaseT
 - two optical fibers
 - four pairs UTP Cat 3 or better
 - two pairs balanced TP Cat 3 or better
- 100BaseFX
 - two pairs UTP Cat 5 or STP
- 100BaseT2 (full duplex)
 - Cat 3 or better
Typical Fashion

<table>
<thead>
<tr>
<th>Computer I/O Bus</th>
<th>inter 100BaseTX transceiver</th>
<th>Fast Ethernet card</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>MII</td>
<td>PHY</td>
</tr>
<tr>
<td>MII connector</td>
<td>MDI</td>
<td>RJ45 connector</td>
</tr>
<tr>
<td>MII-cable</td>
<td>MDI Medium Dependent Interface</td>
<td>PHY Physical Layer Device</td>
</tr>
<tr>
<td>PHY</td>
<td>e.g. 100BaseFX transceiver</td>
<td>e.g. Fibre MIC connector</td>
</tr>
</tbody>
</table>

FLP Burst Coding

- 17 odd-numbered pulses (clock pulses)
- Up to 16 even-numbered data bit-pulses

\[
= 1 \ 1 \ 0 \ 1 \ 0 \ 1 \
\]

Autonegotiation

- Autonegotiation support enables two 100BaseT devices (copper only) to exchange information about their capabilities
 - signal rate, CSMA/CD or full-duplex
- Achieved by Link-Integrity-Test-Pulse-Sequence
 - Normal-Link-Pulse (NLP) technique is already available in 10BaseT to check the link state
 - 10 Mbit/s LAN devices send every 16 ms a 100ns lasting NLP -> no signal on the wire means disconnected
- 100BaseTX uses bursts of Fast-Link-Pulses (FLP) consisting of 17-33 NLPs
 - Each representing a 16 bit word

- To avoid increase of traffic FLP-bursts are only sent on connection-establishments
- 100BaseT stations recognizes 10 Mbit/s stations by receiving a single NLP only
- Two 100BaseT stations analyze their FLP-bursts and investigate their largest common set of features
- Last frames are sent 3 times -> other station responds with acknowledge-bit set
- Negotiated messages are sent 6-8 times
 - FLP- session stops here
FLP-Session

- The first FLP-burst contains the base-link codeword
- By setting the NP bit a sender can transmit several "next-pages"
 - Next-pages contain additional information about the vendor, device-type and other technical data
- Two kinds of next-pages
 - Message-pages (predefined codewords)
 - Unformatted-pages (vendor-defined codewords)
- After reaching the last acknowledgement of this FLP-session, the negotiated link-codeword is sent 6-8 times

Base Page

- Remote Fault (RF)
 - Signals that the remote station has recognized an error
- Next Page (NP)
 - Signals following next-page(s) after the base-page
- Acknowledge (Ack)
 - Signals the receiving of the data (not the feasibility)
 - If the base-page has been received 3 times with the NP set to zero, the receiver station responds with the Ack bit set to 1
 - If next-pages are following, the receiver responds with Ack=1 after receiving 3 FLP-bursts

Coding

- 4B/5B block encoding: each 4-bit group encoded by a 5 bit run-length limited "code-group"
 - Code groups lean upon FDDI-4B/5B codes
 - Some additional code groups are used for signaling purposes; remaining code groups are violation symbols -> easy error detection
 - Groups determinate maximal number of transmitted zeros or ones in a row -> easy clock synchronization
 - Keeps DC component below 10%
 - Code groups are transmitted using NRZI-encoding
 - Code efficiency: 4/5 = 100/125 = 80% (Manchester code only 50%)
4B/5B Coding

- **4B/5B Encoder/Decoder**
 - 16 code groups
 - 32 code groups
 - 25 million code groups per second
 - 125 Mbit/s

Code Group Table

<table>
<thead>
<tr>
<th>PCS code-group</th>
<th>name</th>
<th>MI group</th>
</tr>
</thead>
<tbody>
<tr>
<td>11110</td>
<td>1</td>
<td>0100</td>
</tr>
<tr>
<td>10100</td>
<td>2</td>
<td>0011</td>
</tr>
<tr>
<td>01010</td>
<td>3</td>
<td>0110</td>
</tr>
<tr>
<td>00110</td>
<td>4</td>
<td>1010</td>
</tr>
<tr>
<td>00100</td>
<td>5</td>
<td>1011</td>
</tr>
<tr>
<td>11010</td>
<td>6</td>
<td>1100</td>
</tr>
<tr>
<td>10110</td>
<td>7</td>
<td>1110</td>
</tr>
<tr>
<td>01110</td>
<td>8</td>
<td>1111</td>
</tr>
<tr>
<td>11100</td>
<td>9</td>
<td>undefined</td>
</tr>
<tr>
<td>10000</td>
<td>A</td>
<td>undefined</td>
</tr>
<tr>
<td>01000</td>
<td>B</td>
<td>undefined</td>
</tr>
<tr>
<td>00100</td>
<td>C</td>
<td>undefined</td>
</tr>
<tr>
<td>00000</td>
<td>D</td>
<td>undefined</td>
</tr>
</tbody>
</table>

Remaining code groups are not valid (triggers error detection)

Signaling Types

- **3 Three signaling types**:
 - **100BaseX**:
 - refers to either the 100BaseTX or 100BaseFX specification
 - **100BaseT4**
 - **100BaseT2**

- **100BaseX**
 - combines the CSMA/CD MAC with the FDDI Physical Medium Dependent layer (PMD)
 - allows full duplex operation on link

- **100BaseT4**
 - allows half duplex operation only
 - 8B6T code
 - Uses 4 pairs of wires; one pair for collision detection, three pair for data transmission
 - One unidirectional pair is used for sending only and two bi-directional pairs for both sending and receiving
 - Same pinout as 10BaseT specification
 - Transmit on pin 1 and 2, receive on 3 and 6; bi-directional on 4 and 5; bi-directional on 7 and 8
100BaseTX and 100BaseFX

- **100BaseTX**:
 - 125 MBaud symbol rate, full duplex, binary encoding
 - 2 pair Cat 5 unshielded twisted pair (UTP) or 2 pair STP or type 1 STP
 - RJ45 connector; same pinout as in 10BaseT (transmit on 1 and 2, receive on 3 and 6)

- **100BaseFX**:
 - 125 MBaud symbol rate, full duplex, binary encoding
 - Two-strand (transmit and receive) 50/125 or 62.5/125-µm multimode fiber-optic cable
 - SC connector, straight-tip (ST) connector, or media independent connector (MIC)

100BaseT4 and 100BaseT2

- **100BaseT4**:
 - 25 MBaud, half duplex, ternary encoding
 - Cat3 or better, needs all 4 pairs installed
 - 200 m maximal network diameter
 - maximal 2 hubs

- **100BaseT2**:
 - 25 MBaud, full duplex, quinary encoding
 - 2 pairs Cat3 or better

Agenda

- Ethernet Evolution
- VLAN
- High Speed Ethernet
 - Introduction
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet

Gigabit-Ethernet: IEEE-802.3z / IEEE802.3ab

- Easy integration in existing 802.3 LAN configurations because backwards compatible
 - Through integration of 3 different transceivers for 10, 100 and 1000 Mbit/s
 - No need to change existing equipment
 - Supports also 10 Mbit/s and 100 Mbit/s (not with fibre)
 - Access methods: CSMA/CD or full duplex

- Backbone technology; has also WAN capabilities
 - Reaches 70 km length using fibre optics
 - 1 Gbit/s data rate in both directions (full duplex mode, no collisions)
 - MAC based congestion avoidance (pause frame)
Implementation Overview

Media Access Control (MAC) full duplex and/or half duplex

- Gigabit Media Independent Interface (GMII)
- 1000BaseX
 - 8B/10B encoder/decoder
- 1000BaseT
 - 8B/10B encoder/decoder
- 1000Base-LX
 - LWL Fiber Optic
- 1000Base-SX
 - SWL Fiber Optic
- 1000Base-CX
 - Shielded Balanced Copper
- 1000Base-T
 - UTP Cat 5e

802.3z physical layer & 802.3ab physical layer

Physical Sublayers

- Logical Link Control (LLC)
- MAC Control (optional)
- Media Access Control (MAC)
- Reconciliation
 - GMII
 - PCS
 - PMA
 - LX-PMD
 - SX-PMD
 - CX-PMD
 - LX-MDI
 - SX-MDI
 - CX-MDI
- Medium
 - Medium
 - Medium
 - 1000 Base LX
 - 1000 Base SX
 - 1000 Base CX

CSMA/CD Restrictions (Half Duplex Mode)

- The conventional collision detection mechanism CSMA/CD
 - Requires that stations have to listen (CS) twice the signal propagation time to detect collisions
 - Collision window of 512 bit times at a rate of 1Gbit/s limits the maximal net expansion to 20m!

CSMA/CD Restrictions (Half Duplex Mode)

- Solutions to increase the maximal net expansion:
 - Carrier Extension:
 - Extension bytes appended to (and removed from) the Ethernet frame by the physical layer
 - Frame exists a longer period of time on the medium
 - Frame Bursting:
 - To minimize the extension bytes overhead, station may chain several frames together and transmit them at once ("burst").
Frame Bursting 1

- With both methods the minimal frame length is increased from 512 to 4096 bits
 - = 512 bytes
 - The corresponding time is called slottime
- If a station decides to chain several frames to a burst frame, the first frame inside the burst frame must have a length of at least 512 bytes
 - By using extension bytes if necessary
- The next frames (inside the burst frame) can have normal length (i.e. at least 64 bytes)

Frame Bursting 2

- Station may chain frames up to 8192 bytes (=burst limit)
 - Also may finish the transmission of the last frame even beyond the burst limit
- So the whole burst frame length must not exceed 8192+1518 bytes
 - Incl. interframe gap of 0.096 µs = 12 bytes

1000BaseX Coding

- 8B/10B block encoding: each 8-bit group encoded by a 10 bit “code-group” (symbol)
 - Half of the code-group space is used for data transfer
 - Some code groups are used for signaling purposes
 - Remaining code groups are violation symbols
 - -> easy error detection
 - Groups determine the maximal number of transmitted zeros or ones in a 10 bit symbol
 - -> easy clock signal detection (bit synchronization)
 - No baselinewander (DC balanced)
 - Lacking DC balance would result in data-dependent heating of lasers which increases the error rate
 - Code efficiency: 8/10 = 1000/1250 = 80%

8B/10B Coding

- 256 code groups
- 8 x 125 Mbit/s
- 1024 code groups
- 125 million code groups per second
- 1250 Mbit/s
Implementations

- actually 2 different wavelengths on fibre media, both full duplex, SC connector
 - 1000Base-SX: short wave, 850 nm multimode (up to 550 m length)
 - 1000Base-LX: long wave, 1300 nm multimode or monomode (up to 5 km length)
- 1000Base-CX:
 - Twinax Cable (high quality 150 Ohm balanced shielded copper cable)
 - About 25 m distance limit, DB-9 or the newer HSSDC connector

1000BaseT

- 1000Base-T defined by 802.3ab task force
 - UTP uses all 4 line pairs simultaneously for duplex transmission!
 - Using echo-cancelling: receiver subtracts own signal
 - 5 level PAM coding
 - 4 levels encode 2 bits + extra level used for Forward Error Correction (FEC)
 - Signal rate: 4 x 125 Mbaud = 4 x 250 Mbit/s data rate
 - Cat. 5 links, max 100 m; all 4 pairs, cable must conform to the requirements of ANSI/TIA/EIA-568-A
 - Only 1 CSMA/CD repeater allowed in a collision domain
 - note: collision domains should be avoided

Autonegotiation

- Both 1000Base-X and 1000Base-T provide autonegotiation functions to determinate the
 - Access mode (full duplex - half duplex)
 - Flow control mode
- Additionally 1000Base-T can resolve the data rate
 - Backward-compatibility with 10 Mbit/s and 100 Mbit/s
 - Also using FLP-burst sessions

1000BaseX Autonegotiation

- 1000Base-X autonegotiation uses normal (1000Base-X) signalling!
 - Signaling part of the 8B/10B code groups
 - No fast link pulses!
 - Autonegotiation had never been specified for traditional fiber-based Ethernet
 - So there is no need for backwards-compatibility
- 1000Base-X does not negotiate the data rate!
 - Only gigabit speeds possible
- 1000Base-X autonegotiation resolves
 - Half-duplex versus full-duplex operation
 - Flow control
1000BaseT Autonegotiation

- Autonegotiation is only triggered when the station is powered on.
- At first the stations expects Gigabit-Ethernet negotiation packets (replies).
- If none of them can be received, the 100Base-T fast link pulse technique is tried.
- At last the station tries to detect 10Base-T stations using normal link pulses.

10 Gigabit Ethernet (IEEE 802.3ae)

- Preserves Ethernet framing.
- Maintains the minimum and maximum frame size of the 802.3 standard.
- Supports only full-duplex operation.
 - CSMA/CD protocol was dropped.
- Focus on defining the physical layer.
 - Four new optical interfaces (PMD).
 - To operate at various distances on both single-mode and multi-mode fibers.
 - Two families of physical layer specifications (PHY) for LAN and WAN support.
 - Properties of the PHY defined in corresponding PCS.
 - Encoding and decoding functions.
PMDs

- **10GBASE-L**
 - SM-fiber, 1300nm band, maximum distance 10km
- **10GBASE-E**
 - SM-fiber, 1550nm band, maximum distance 40km
- **10GBASE-S**
 - MM-fiber, 850nm band, maximum distance 26 – 82m
 - With laser-optimized MM up to 300m
- **10GBASE-LX4**
 - For SM- and MM-fiber, 1300nm
 - Array of four lasers each transmitting 3,125 Gbit/s and four receivers arranged in WDM (Wavelength-Division Multiplexing) fashion
 - Maximum distance 300m for legacy FDDI-grade MM-fiber
 - Maximum distance 10km for SM-fiber

LAN PHY

- **10BASE-X**
 - 64B/66B coding running at 10.3125 Gbit/s

WAN PHY

- **10BASE-W**
 - 64B/66B encoded payload into SONET concatenated STS192c frame running at 9,953 Gbit/s
 - Adaptation of 10Gbit/s to run over traditional SDH links

IEEE 802.3ae PMDs, PHYs, PCSs

- **10GBASE-ER**
- **10GBASE-EW**
- **10GBASE-LR**
- **10GBASE-LW**
- **10GBASE-SR**
- **10GBASE-SW**
- **10GBASE-LX4**
- **10GBASE-LX**

10 Gigabit Ethernet over Copper

- **IEEE 802.3ak defined in 2004**
 - 10GBASE-CX4
 - Four pairs of twin-axial copper wiring with IBX4 connector
 - Maximum distance of 15m
- **IEEE 802.3an working group**
 - 10GBASE-T
 - CAT6 UTP cabling with maximum distance of 55m to 100m
 - CAT7 cabling with maximum distance of 100m
 - Standard ratification expected in July 2006